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Abstract
In fully cooperative multi-agent reinforcement learning (MARL) settings, the environments

are highly stochastic due to the partial observability of each agent and the continuously

changing policies of the other agents. To address the above issues, we integrate

distributional RL and value function factorization methods by proposing a Distributional

Value Function Factorization (DFAC) framework to generalize expected value function

factorization methods to their distributional variants. DFAC extends the individual utility

functions from deterministic variables to random variables, and models the quantile

function of the total return as a quantile mixture. To validate DFAC, we demonstrate its

ability to factorize a simple two-step matrix game with stochastic rewards and perform

experiments on all Super Hard tasks of StarCraft Multi-Agent Challenge (SMAC),

showing that DFAC is able to outperform expected value function factorization baselines.

Map IQL VDN QMIX DIQL DDN DMIX

6h_vs_8z 0.00% 0.00% 8.81% 0.00% 83.52% 68.75%

3s5z_vs_3s6z 7.67% 90.91% 65.06% 29.83% 94.60% 90.62%

MMM2 69.32% 87.78% 92.33% 83.52% 97.44% 95.17%

27m_vs_30m 1.70% 64.20% 86.08% 12.50% 94.60% 86.08%

corridor 83.10% 85.23% 4.26% 92.05% 95.45% 90.06%

6h_vs_8z 13.96 15.49 14.02 14.98 19.32 17.81

3s5z_vs_3s6z 15.48 19.77 20.06 17.42 20.68 20.78

MMM2 17.47 19.32 19.45 19.21 21.06 19.69

27m_vs_30m 13.95 18.49 19.46 15.16 19.72 19.40

corridor 19.30 19.38 13.44 19.57 19.97 19.61

(Fig.2) the 
Learned Factorization

We generalize the two baselines: VDN and QMIX to their distributional variant: DDN and

DMIX, respectively. The results showed that DDN and DMIX can successfully factorize

the joint return distribution and achieve outstanding performance in SMAC:

(Table.1) Win rates and average scores in SMAC

• Value-based Learning Methods for Fully Cooperative MARL

argmax𝐮𝑄jt 𝐡, 𝐮 =

argmax𝑢1𝑄1 ℎ1, 𝑢1
⋮

argmax𝑢K𝑄K ℎK, 𝑢K

The previous Value Decomposition Network (VDN) and QMIX methods assume 

additivity and monotonicity, respectively, to simplify the tasks:

(Additivity) 

𝑄jt 𝐡, 𝐮 = σ𝑘=1
K 𝑄𝑘 ℎ𝑘 , 𝑢𝑘

(Monotonicity) 

𝑄jt 𝐡, 𝐮 = 𝑀 𝑄1 ℎ1, 𝑢1 , … , 𝑄K ℎK, 𝑢K

where 
𝜕𝑀

𝜕𝑄𝑘
≥ 0, ∀𝑘 ∈ {1, … , K}

• Distributional Reinforcement Learning

Distributional RL methods have been proved empirically to outperform expected RL 

methods in various single-agent RL (SARL) domain. The distributional Bellman 

operator 𝑇𝜋 is proved to have a contraction in 𝑝-Wasserstein distance 𝑊𝑝, ∀𝑝 ∈ [1,∞):

𝑇𝜋𝑍 𝑠, 𝑢 =
𝐷
𝑅 𝑠, 𝑢 + 𝛾𝑍 𝑠′, 𝑢′

𝑊𝑝 𝑋, 𝑌 = 0׬
1
|𝐹𝑋

−1 𝜏 − 𝐹𝑌
−1 𝜏 |𝑑𝜏

1/𝑝

Implicit Quantile Network (IQN) is by far the most 

light-weight distributional RL algorithm. It models

the quantile function of the return distribution, and 

can efficiently approximate the expectation by 

inverse distribution sampling 𝜏𝑖 ∼ 𝑈 0,1 𝑖=1
𝑁 :

𝑄 𝑠, 𝑢 = 𝔼 𝑍 𝑠, 𝑢 = න
0

1

𝐹−1 𝑠, 𝑢; 𝜏 𝑑𝜏 ≈
1

𝑁
෍

𝑖=1

𝑁

𝐹−1(𝑠, 𝑢; 𝜏𝑖)

Background

(Fig.3) VDN (Fig.4) QMIX

(Fig.5) DQN (Fig.6) IQN

Independent Q-Learning (IQL) is the simplest value-based learning method for MARL,

where each agent attempts to maximize the total rewards separately. This causes

unstationarity due to the changing policies of the other agents and may not converge.

Thus, value function factorization methods are introduced to enable centralized training

of factorizable tasks based on the IGM (Individual-Global-Max) condition, where

optimal individual actions result in the optimal joint action of the group of agents:
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The DFAC Framework
• DFAC Framework and Mean-Shape Decomposition

The naive generalization of the distributional form of IGM does not satisfy IGM in 

general. Thus, we introduced the mean-shape decomposition to separate the 

approximation of the mean and the shape of the return distribution:

𝑍jt = 𝔼 𝑍jt + (𝑍jt − 𝔼 𝑍jt ) = 𝑍mean + 𝑍shape, where

𝑍mean = Ψ 𝑠, 𝑄1 ℎ1, 𝑢1 , … , 𝑄K ℎK, 𝑢K
𝑍shape = Φ 𝑠, 𝑍1 ℎ1, 𝑢1 , … , 𝑍K ℎK, 𝑢K

= 𝑍state 𝑠 +෍
𝑘=1

K

𝛽𝑘(𝑠)(𝑍𝑘 ℎ𝑘 , 𝑢𝑘 − 𝑄𝑘 ℎ𝑘, 𝑢𝑘 )

• A Practical Implementation with Quantile Mixture

The factorization network Ψ can be any expected value function factorization method, 

while the shape network Φ can be approximated by a quantile mixture:

Φ 𝜏 = 𝐹state
−1 𝑠; 𝜏 +෍

𝑘=1

K

𝛽𝑘(𝑠)(𝐹𝑘
−1 ℎ𝑘, 𝑢𝑘; 𝜏 − 𝑄𝑘 ℎ𝑘, 𝑢𝑘 )

(Fig.1) The architecture of the DFAC framework
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More Information
For the full paper, references, and gameplay video, please scan the QR Code below:

Questions?

j3soon@gapp.nthu.edu.tw
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We introduced DFAC for integrating distributional RL with MARL domain. We first

proposed mean-shape decomposition procedure to ensure the IGM condition holds for all

factorizable tasks. Then, we proposed the use of quantile mixture to implement the mean-

shape decomposition in a computationally friendly manner. In order to validate the

effectiveness of DFAC, we presented experimental results performed on all Super Hard

scenarios in SMAC for a number of MARL baseline methods as well as their DFAC

variants. The results show that DDN and DMIX outperform VDN and QMIX. DFAC can

be extended to more value function factorization methods and offers an interesting research

direction for future endeavors. More experiment results are presented in the full paper.
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(Fig.7) One of the maps in SMAC

mailto:j3soon@gapp.nthu.edu.tw

