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l. Abstract

With the advancement of 5G and emerging 6G standards, communication frequency bands are extending to millimeter-wave and terahertz ranges, offering
ultra-high spectral efficiency and transmission rates. This project simulates and experiments in the 300 GHz terahertz band for 6G, employing an AutoEncoder
model to mitigate nonlinear effects introduced by the experimental channel. This approach lowers Bit error rate (BER) of the OFDM system.
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AutoEncoder (AE) is an unsupervised learning model designed to compress c. Gain Fig. 5 BER vs. SNR with/without AE after ZF Equalizer
and reconstruct data, enabling constellation points restoration without As SNR increases, both ZF Equalizer and AutoEncoder gains improve.
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labeling data. By reducing two-dimensional signals to one dimension, data Fig. 6(b) shows AutoEncoder alone cannot fully replace the Equalizer,
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Fig. 2 (a) Structure of AutoEncoder, (b) Heat map of different neuron sets
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The AE features a symmetrical Encoder and Decoder structure. The SNR (dB)
architecture includes two fully connected layers with ELU activation, chosen Fig- 6 (1) ZF Equalizer and AE gains at varying SNRs, (b) Gain comparison with/without AE
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for its ability to handle negative inputs, avoid the “Dying ReLU” problem, and

offer tunable saturation properties. The heat map (fig.2(b)) helps identify c. Application of AutoEncoder in OFDM
efficient neuron combinations to minimize BER while reducing computational
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In OFDM systems, signal transmission faces performance degradation due to R Fig, 3 Structure of OFDM
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V. Conclusion

n this project, we integrated the AutoEncoder model into the lab's OFDM framework to address nonlinear effects beyond the ZF Equalizer's capabilities.
Experiments at a 300 GHz carrier with 4QAM and SNR =10 dB showed a 61.7% reduction in BER, significantly enhancing system performance and reliability.
Moving forward, we plan to refine the AutoEncoder to handle more complex channels and higher-order modulation schemes, paving the way for practical

applications in 6G communication systems.




