
Verilog Simulation Optimization via Instruction Reduction
隊伍編號：EECS009 組員：樊明膀、劉家豪、許鎧博

Abstract
Since the complexity of a SOC increases exponentially, functional verification becomes
a time-consuming problem in the design cycle. To reduce the main reason contributing
to the low simulation efficiency on CPU time, contestants are required to facilitate the
simulator by decreasing the number of continuous assignments and bit–selections.
The optimized Verilog file must be syntactically correct, inviolate the given limitations,
and be functional equivalent to the input Verilog file. Any third-party open-source are
not allowed in the program.

Under the constraints, this project provides a data structure to save the parsing
instructions rather than common graphs. This data structure similar to a binary tree
can represent the circuit directly without further transformation, reducing the
complexity during the optimization. In addition to implement traditional optimization
methods, this project provides novel strategies to further improve simulation
efficiency. After the “Final Test”, we won the ICCAD awards out of all contestants.

Problem Formulation
Use a C++ program to minimize the total number of assignments and bit/part-selects
in the given Verilog and outputs the optimized Verilog file with the same functionality.
Input Format: A combination circuit with two elements in one Verilog assignment and
a tb module.
Output Format: Allow to optimize the circuit, combine the output and add additional
temporary wire assignments, but need to conform to the constraints and don’t lose
the functionality.
Constraint: Backus-Naur Form (BNF) is adopted here as the regulation to LHS and RHS.

<LHS> ::=
out[#]
| origtmp#
| xformtmp#
| out[MSB:LSB]

<UNARY_OP> ::=
~ (bit negation)

<RHS> ::=
<ITEM>
| <UNARY_OP> <ITEM>
| <ITEM> <BINARY_OP> <ITEM>

<BINARY_OP> ::=
& (bit and)
| | (bit or)
| ^ (bit or)

<ITEM> ::= <1 or N-bit 2-state constant>
| out[#]
| in[#]
| origtmp#
| out[MSB:LSB]
| in[MSB:LSB]
| xformtmp#
| xformtmp#[MSB:LSB]

module dut (out, in);
output[SIZEOUT:0] out;
input[SIZEIN:0] in;
wire origtmp1;
...
wire origtmpN;
assign <LHS> = <RHS>;
…

Evaluation: If any of simulation correctness, optimization regulation, and execution
time limit is violated, simulation efficiency will NOT be evaluated. If not, the score will
be calculated by score = (<OUT_PORT_WIDTH> + <IN_PORT_WIDTH>) /
(<COUNT_ASGN> + <COUNT_SELS>).

For each “original.v”, the number of (<OUT_PORT_WIDTH> + <IN_PORT_WIDTH>) is
fixed. Therefore, the lower the number of (<COUNT_ASGN> + <COUNT_SELS>)
indicates fewer CPU instructions needed, the higher the score is.

Methodology and Comparison to current research

<Fig.1 Flowchart>

Implementation
1. Verilog Parser and Data Structure ─ After parsing the input Verilog file, we divided

them into three categories to map input assignments into the data structure.

2. Apply Basic Logic Synthesis Rules ─ In Boolean algebra, we all know several
Boolean identities are used to minimize the Boolean function. First, we will list
some common constant operations of the Boolean function in the following table.
Then, optimize the circuit with the rules.

3. Substitution Method ─ After minimizing the inner data structure, we hope to
substitute some variables with the corresponding example equations as Fig. 3.

4. Pattern Comparison ─ We offer several Boolean equations that can be minimized
as the equations below. If we use tree traversal to find the subtree patterns of the
equations, then we can rewrite the structure of the subtree to optimize the
circuit. In addition to those equations, it is likely to get an optimized function with
the help of commutative law as Fig. 4.

5. SAT-Solver-Based Redundant Wire Checking ─ In the EDA field, we will use testing
(stuck-at-fault) to check the possible faults in the chips. For a combination circuit,
an undetectable fault is corresponding to a redundant wire. Undetectable faults
do not change the functionality of the circuit.

6. Gate Merging ─ Compare two circuits and merge gates that have the same
functionality to reduce redundancy.

7. Output Merging ─ Merge the continuous output to reduce the number of bit-
selection as the Fig. 5.

8. Substitute Repeat PI with Temporary Wire ─ If the input signal is used in multiple
assignments, we can use a temporary wire to substitute the input in order to
reduce the number of bit-selection.

A|0 = A
A|1 = 1
A|2 = 1

A&0 = 0
A&1 = A
A&2 = 0

A^0 = A
A^1 = ~A
A^2 = 2

1. out[0] = origtmp1;
origtmp1 = in[0] & in[1];

2. out[0] = origtmp1 | origtmp2;
origtmp1 = in[0];
origtmp2 = in[2];

1. a|(ab) = a
2. a&(a|b) = a
3. a|(~a&b) = a|b
4. a&(~a|b) = a&b
5. ~a&b | a&~b = a^b
6. ~(~a) = a (double negation)
7. a&(~a) = 0 <Fig.4 Commutative Law>

Experimental Result
The following experimental results in the public 9 testcases were conducted in the
Linux environment provided by the CAD Contest as Fig .6, which represents the
score comparison between the original Verilog file and the optimized one.

One of these approaches can get a score almost ten times better than the original
case. Even some test cases can be simplified to the simplest form of them by our
work. Furthermore, our group won the ICCAD awards among all contestants.

out[0] = in[0] & in[1];

out[0] = in[0] | in[1];

<Fig. 6 Comparison to experimental results>

Category 1:
assign out = a;
Category 2:
assign out = ~a;

Category 3:
assign out = a & b;
assign out = a | b;
assign out = a ^ b;

<Fig2. Data Structure >

<Fig.5 Output Merging>

<Fig3. Substitution Method

In recent years, researchers have usually
used traditional graphs (such as AIG) to do
logic optimization. However, we use a data
structure similar to the binary tree to
represent the circuit rather than AIG.

The complexity of traversing the circuit will
be decreased by this data structure, which
has good properties to deal with don’t care
and pattern comparison implementation

What’s more, we find that there are few
kinds of research talking about how to
optimize the RTL file which has the XOR
gates. In our program, we develop this
structure to optimize the Verilog file and
the circuit accompanied by the XOR gates.
Fig. 1 is the flowchart of our work, which
will be elaborated in the next part.

